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Abstract 

 
In engineering, there is a need to develop algorithms that can perform computations 

simultaneously.  Developing the ability to solve differential equations simultaneously will 
increase the speed at which engineering problems can be solved.  Field-Programmable Gate 
Arrays (FPGAs) are new computational tools that can run operations in parallel.  In traditional 
CPUs, gates are hardwired to the processor.  Many jobs must execute sequentially and gates that 
are not being used waste power and generate heat.  FPGAs interconnect only the gates needed to 
perform an operation at hand.  They reemploy gates when another operation needs to be run.  
Many circuits can be built, destroyed, and rebuilt to perform jobs in parallel on a single FPGA.  
The graphical programming language, VIVA, has been developed and tailored for programming 
FPGAs.  An integration algorithm needs to be developed in VIVA so solutions to differential 
equations can be found using FPGAs. 

The numerical method of finding the sum of areas of rectangles under a function will be 
used to integrate the function.  This method requires iterations to be used.  Assuming the iterative 
process is not too large, the parallelism capability of FPGAs allows the processes to complete 
instantly.  Two methods of integrating with rectangles can be used.  The first method is of the 
form ∑∆X*f((i+1)∆X) where i goes from 0 to n-1 where n is the number of rectangles.  The 
second method is of the form ∑∆X*f(((i+1)-0.5)*∆X) where i goes from 0 to n-1 where n is the 
number of rectangles.   

Two integration algorithms were brainstormed.  One algorithm was implemented.  It 
shows that an increment value of 0.01 produces the least error for most functions.  For linear 
functions, it was found that error increases with more iterations while for other functions it 
decreases.  For integrating functions that involve square root, the algorithm implemented does 
not produce accurate results.  A C++ version of the algorithm was written and produces more 
accurate results for integrating square root functions.  Due to this problem, it is hypothesized that 
a bug in either the VIVA algorithm or in VIVA itself needs to be found and repaired.  For most 
cases, the algorithm has shown that the second method of integration with rectangles is more 
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accurate than the first.  The integration algorithm developed has formed a foundation to solve 
differential equations.  More complex integration algorithms can be developed from this 
algorithm. 

 
 
 
 

 
Introduction  
 
Massively Concurrent and Distributed Processing allows multiple processors to perform 
operations simultaneously.  This technique leads to faster computing.  Field Programmable Gate 
Arrays (FPGAs) take away the need to have many processors, but still provide fast computing.  
A FPGA is an assemblage of binary gates arranged in logical blocks.  The gates are 
interconnected by software and can be reprogrammed thousands of times per second 
(Singleterry, 1).  In traditional CPUs, gates are hard wired to the processor.  They cannot be 
reallocated to perform multiple jobs in parallel.   
 
The graphical programming language, VIVA, has been developed to program FPGAs.  VIVA 
describes behavior from the algorithm level all the way to the bit level.  It includes a 
compiler/operating system for mapping algorithm-level, behavioral descriptions into FPGA 
hardware (Star Bridge, 1).  An example of VIVA code is shown in Figure 1.  The code in the 
figure performs multiplication of A and B. 

  
 
Figure 1.  Multiplication in VIVA 
 
 
Solving differential equations with FPGAs can greatly speed the time it takes to solve 
engineering problems.  An integration tool needs to be available to make solving differential 
equations possible.  Thus, an integration algorithm needs to be developed on VIVA.  The 
algorithm will lay the foundation towards developing algorithms that can solve differential 
equations using FPGAs. 
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The definite integral of a function, f(x), can be found by finding the sum of the areas of the 
rectangles underneath it from a lower limit Xo to an upper limit X.  The area of each rectangle is 
given by ∆x*f(Xi) where ∆x is small.  This numerical method will be used to integrate functions 
on VIVA.  Other ways of integrating such as using Simpson’s Rule and the Trapezoidal Rule 
require a higher degree of complexity for VIVA to perform at this time.  They can be 
implemented later or as further improvements to VIVA arrive. 
 
 
 
Two Methods of Integrating with Rectangles 
 
Two methods of integrating using rectangles can be implemented in VIVA.  They are shown 
under 1stMethod and 2ndMethod. 
 
 
1st Method: 
 
The graph below demonstrates how a function can be integrated using rectangles. 

 
 
Graph1 
 
Thus, the area can be written as: 
Area  = ∆X*f(∆X) + ∆X*f(2∆X) + ∆X*f(3∆X) + ……+ ∆X*f((i+1)∆X), 
where i goes from 0 to n-1 where n is the number of rectangles. 
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The problem with this method is that the portions of the rectangles above f(x) cause error.  ∆X 
needs to be small to give more accurate results, but the smaller it is the more iterations VIVA 
needs to perform. 
 
 
 
 
 
 
2nd Method: 
 
The graph below demonstrates a different approach to integrate functions using rectangles. 

 
Graph2 
 
Thus, the area can be written as: 
Area  = ∆X*f(0.5∆X) + ∆X*f(1.5∆X) + ∆X*f(2.5∆X) + …… 

+ ∆X*f(((i+1)-0.5)*∆X), 
where i goes from 0 to n-1 where n is the number of rectangles. 
 
Using Method 2 reduces the error caused by the area of the rectangles above f(x).  Since the 
height of each rectangle is a function of half its base, portions of the area under f(x) do not get 
calculated.  Their error is nullified by the area of the rectangles above f(x).  As seen in graph2, 
the area under f(x) that does not get calculated is nearly equal to the area of the rectangles above 
f(x).  This method will be able to use larger values of ∆X. 
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Developing the Integration Algorithm 
 
An integration algorithm has already been developed that can integrate X^2 using the 1st method 
of adding rectangles.  The integration algorithm needs to be expanded to integrate any function 
and use methods 1 and 2 for adding rectangles. 
 
The integration algorithm needs to answer the following questions: 

1. What value of ∆X gives a reasonable result? 
2. How much does error increase or decrease as the number of iterations increase? 
3. Which integration method, 1 or 2, is the best? 

 
Establishing Constraints 
 
It is hypothesized that integration method 2 will be more efficient.  However, both methods need 
to be run to show just how efficient they are with respect to each other.  An integration program 
must be developed that can use both methods 1 and 2.  It is also necessary to allow any function 
to be integrated.  Thus, a function box that can hold any function needs to be developed.  The 
user should be able to change ∆X when the program has either slowed down or temporarily 
stopped.  Starting the integration at an initial value other than 0 is also desired. 
 
The constraints for the best integration algorithm are summarized as follows: 
 

1. Need to use Methods 1 and 2. 
2. Allow any function to be integrated (provide a function box). 
3. Allow ∆X to be changed when the program has either slowed down or temporarily 

stopped. 
4. Allows a lower limit and upper limit for definite integral. 

 
The Two Solutions 
 
Two algorithms were brainstormed.  Their pseudo codes are shown in the following flowcharts.  
Each algorithm will be analyzed to see which one can best meet the constraints. 
 
Idea1: 
 
 
 
 
 
 
 
 
 
 

START

i 
∆X Xo--

Lower 
Limit For Loop 

From 0 to i

Multiply 
 ∆X*(0.5 0 or 

A

Function

Function Value * ∆X 

END 

Initial 
Area=0 
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The Accumulator object is used to add ∆X to Xi, outputting Xi+1.  When the object is exited, a 
feedback mechanism causes Xi+1 to equal Xi and be used in the next iteration.  The same 
mechanism is used to keep track of the total area. 
 
Idea2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accumulator 
Output: Xi+1 

Add to total area, 
uses Accumulator 

Output 
Total Area 

START

i ∆X 

For Loop 
From n=0 to i 
Output n 

(n* ∆X)=Ans 

1 or 
0.5 

A

A

Function(Ans3) 

Function Value * ∆X 

Add to total area, uses 
Accumulator 

Output 
Total Area 

END

A

Initial 
Value, Xo 

∆X*(1 or 0.5)+Ans2=Ans3 

Xo+Ans=Ans2 

Initial 
Area=0 
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Analysis of each Solution 
 
Each algorithm is evaluated to see how well it meets the constraints. 
Each idea is given an integer score in the range of 1-4 to rate how it satisfies each constraint.  
The idea with the most points will be implemented. 
 
Rating Scale: 
1—Poor 
2—Fair 
3—Good 
4—Excellent 
 
 
Idea1: 
 

1. Allows either method 1 or method 2 to be used.  In this idea, the multiplier object runs at 
the same time as Accumulator.  Running these objects parallel to each other utilizes the 
parallelism capability of FPGAs, thus decreasing running time.  Score: 4 

2. The function object allows any function to be integrated.  The function object calls on a 
function developed in the function object’s sheet.  A score of 4 cannot be given because 
the program needs to be recompiled for each new function.  Score: 3 

3. Allows ∆X to be changed.  However, slowing down or temporarily stopping the program 
can only change ∆X.  Score: 3 

4. The input value Xo allows a lower limit to be specified.  Score: 4 
Total Score: 14/16 

 
 
Idea2: 
 

1. Allows either integration method 1 and 2 to be used.  Step-by-step approach.  Does not 
use the parallelism found in Idea1.   ∆X is to be multiplied by 1 instead of 0 to use 
method 1. Score: 3 

2. The function object allows any function to be integrated.  The function object calls on a 
function developed in the function object’s sheet.  A score of 4 cannot be given because 
the program needs to be recompiled for each new function.  Score: 3 

3. Allows ∆X to be changed.  However, slowing down or temporarily stopping the program 
can only change ∆X.  Score: 3 

4. This algorithm allows a lower limit to be specified.  Score: 4 
Total Score: 13/16 

 
 
Decision 
 
Since Idea1 received the highest score, it will be implemented. 
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Improvements to VIVA will continue to come.  Unforeseen problems in implementing Idea1 can 
also arise. 
Idea2 will be used if it is later felt that it is the better option. 
 
 
 
Results 
 
Idea1 was implemented.   
The following modifications were made: 

1. A bug was discovered when running the Accumulator object and multiplier object in 
parallel.  The program was changed so that the Accumulator and the multiplier objects 
ran sequentially.  Despite this bug, Idea1 remained the algorithm of choice because 
improvements to VIVA or the fixing of the bug will allow the Accumulator and 
multiplier objects to run parallel. 

2. Idea1 was made into an object called Integral object.  The function box inside the Integral 
object was taken out.  Instead, the user defines the function outside of Integral.  Integral 
calls on the function by passing to it a value, x, obtained after the 1st subtraction object.  
The value f(x) is passed back to Integral from the function so that it can be multiplied by 
∆X. 

 
The integration results for functions f(x)=x, f(x)=x^2, f(x)=x^5, and f(x)=x^8, f(x)=1/x, 
f(x)=x^4, f(x)=x^3, and f(x)=1/x + x^2 +5 are shown in the following tables.   
 
Using a |∆X| value that was a power of 10 < 1 like 0.1 and 0.01 was preferred for the 
following functions.  With |∆X| as a power of 10 < 1, any lower and upper limits could be 
specified provided that the number of digits to the right of the decimal in the upper and lower 
limits was not greater than the number in ∆X. 

 
Function: f(x)=x  Integrating from x=0 to x=2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-19 2.099998 2 4.9999
Method 2 0.1 0-19 1.999998 2 0.0001
Method 1 0.01 0-199 2.009992 2 0.4996
Method 2 0.01 0-199 1.999992 2 0.0004

 
Function: f(x)=x^2  Integrating from x=0 to x=2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-19 2.869995 2.666667 7.624799047
Method 2 0.1 0-19 2.664995 2.666667 0.062699992
Method 1 0.01 0-199 2.686688 2.666667 0.750787406
Method 2 0.01 0-199 2.666637 2.666667 0.001125

 
Function: f(x)=x^5  Integrating from x=0 to x=2     
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Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-19 12.33325 10.66667 15.62418262
Method 2 0.1 0-19 10.63332 10.66667 0.312656152
Method 1 0.01 0-199 10.82725 10.66667 1.50543703
Method 2 0.01 0-199 10.66625 10.66667 0.003937499

 
 
 
 
 
 
 
 
 
Function: f(x)=x^8  Integrating from x=0 to x=3 for DeltaX=0.1 and from x=0 to x=2 for DeltaX=0.01   
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-29 2529.595 2187 15.6650663
Method 2 0.1 0-29 2179.701 2187 0.333744856
Method 1 0.01 0-199 58.1768 56.889 2.263706516
Method 2 0.01 0-199 56.884 56.889 0.008789045

 
Function: f(x)=1/x Integrating from x=1 to x=2 to find ln(2)     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-9 0.6687716 0.693147181 3.516652919
Method 2 0.1 0-9 0.6928357 0.693147181 0.044937146
Method 1 0.01 0-99 0.6906521 0.693147181 0.359964035
Method 2 0.01 0-99 0.69314429 0.693147181 0.00041702

 
Function: f(x)=x^4 Integrating from x=1 to x=-2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 -0.1 0-29 -7.379959 -6.6 11.81756061
Method 2 -0.1 0-29 -6.584982 -6.6 0.227545455
Method 1 -0.01 0-299 -6.675242 -6.6 1.140030303
Method 2 -0.01 0-299 -6.599793 -6.6 0.003136364

 
Function: f(x)=x^3 Integrating from x=-3 to x=2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-49 -14.51252 -16.25 10.69218462
Method 2 0.1 0-49 -16.24377 -16.25 0.038338462
Method 1 0.01 0-499 -16.07513 -16.25 1.076123077
Method 2 0.01 0-499 -16.24994 -16.25 0.000369231

 
Function: f(x)=1/x + X^2 + 5 Integrating from x=1 to x=3     
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Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-19 20.13599 19.76527896 1.875566975
Method 2 0.1 0-19 19.76322 19.76527896 0.010417031
Method 1 0.01 0-199 19.8019 19.76527896 0.185279675
Method 2 0.01 0-199 19.76516 19.76527896 0.00060184

 
For most of the functions, a ∆X value of 0.01 can produce a result with a small percent error. 
 
 
 
 
 
 
For the function f(x)=x, the error increases as the number of iterations increases.  The following 
table and Graph 3 show this behavior. 
 
Function: f(x)=x  Integrating from x=0 to x=2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 2 1 0-1 2 2 0
Method 2 0.5 0-3 2 2 0
Method 2 0.25 0-7 2 2 0
Method 2 0.2 0-9 1.999999 2 5E-05
Method 2 0.1 0-19 1.999998 2 0.0001
Method 2 0.05 0-39 1.999997 2 0.00015
Method 2 0.025 0-79 1.999996 2 0.0002
Method 2 0.02 0-99 1.999995 2 0.00025
Method 2 0.01 0-199 1.999992 2 0.0004
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Iterations vs. %Error for Integrating f(x)=x From 0 to 2 Using Integration Method 2
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Graph 3 
 
 
For f(x)=x^2, the percent error decreases as the number of iterations increases.  The following 
table and Graph 4 show this behavior. 
 
 
Function: f(x)=x^2  Integrating from x=0 to x=2     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 2 1 0-1 2.5 2.666666667 6.25
Method 2 0.5 0-3 2.625 2.666666667 1.5625
Method 2 0.25 0-7 2.65625 2.666666667 0.390625
Method 2 0.2 0-9 2.659997 2.666666667 0.2501125
Method 2 0.1 0-19 2.664995 2.666666667 0.0626875
Method 2 0.05 0-39 2.666244 2.666666667 0.01585
Method 2 0.025 0-79 2.666554 2.666666667 0.004225
Method 2 0.02 0-99 2.666591 2.666666667 0.0028375
Method 2 0.01 0-199 2.666637 2.666666667 0.0011125
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Iterations vs. %Error in Integrating X^2 from 0 to 2 Using Integration Method 2
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Graph 4 
 
It is concluded that for functions that are more linear in nature, using a large value of ∆X can 
yield a smaller percent error.   
 
Functions that involve a square root do not integrate well with the current VIVA algorithm.  
Using smaller values of ∆X reduces the error, but the error is still large.  The following two 
tables show the results for integrating f(x)=√x. 
 
 
 
 
 
Function: f(x)=sqrt(X) Integrating from x=0 to x=3     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-29 3.677477 3.464101615 6.159616794
Method 2 0.1 0-29 3.763621 3.464101615 8.646379874
Method 1 0.01 0-299 3.672074 3.464101615 6.003645619
Method 2 0.01 0-299 3.649745 3.464101615 5.359062911

 
Function: f(x)=sqrt(X) Integrating from x=1 to x=3     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-19 3.03544 2.797434948 8.507974481
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Method 2 0.1 0-19 3.090086 2.797434948 10.46140686
Method 1 0.01 0-199 3.014357 2.797434948 7.75431978
Method 2 0.01 0-199 2.999727 2.797434948 7.231340684

 
At first, it may seem that the method of integration needs to be changed.  However, a C++ 
version of the algorithm was written.  It produced the following results for integrating square 
root functions: 
 
Function: f(x)=sqrt(X).  Integrating from x=0 to x=3 in C++     
            

Integration Method DeltaX i Computer Value Theoretical Value % Error 
Method 1 0.1 0-29 3.5443709 3.464101615 2.317174661
Method 2 0.1 0-29 3.4659069 3.464101615 0.052114085
Method 1 0.01 0-299 3.4725544 3.464101615 0.244010881
Method 2 0.01 0-299 3.4641602 3.464101615 0.001691199

 
Function: f(x)=sqrt(X).  Integrating from x=1 to x=3 in C++     
            
Integration Method DeltaX i Computer Value Theoretical Value % Error 

Method 1 0.1 0-19 2.8338614 2.797434948 1.30213759
Method 2 0.1 0-19 2.797523 2.797434948 0.003147598
Method 1 0.01 0-199 2.8010919 2.797434948 0.130725185
Method 2 0.01 0-199 2.7974355 2.797434948 1.97324E-05

 
The C++ program gives more accurate results for the same inputs as the VIVA program.  Thus, it 
is concluded that the problem with integrating square root functions is not due to the integration 
method.  It is hypothesized that there is a bug within the algorithm or within VIVA itself.  This 
bug needs to be found and corrected. 
 
 
Integral object can be stopped or slowed down in a calculation to allow the increment value to be 
changed.  This ability is useful when integrating functions that have intervals where the slope is 
small.  This ability was used to integrate the f(x)=1/X^2. 
 
 

Function: f(x)=1/X^2 Integrating from x=0.5 to x=2 by DeltaX=0.01, 
from x=2 to x=4 by DeltaX=1 

   
          
Integration 

Method DeltaX Computer Value Theoretical Value % Error 

Method 1 
0.01 for i=0 to 149, 
1 for i=149 to 151 1.654988 1.75 5.42925714

Method 2 
0.01 for i=0 to 149, 
1 for i=149 to 151 1.741563 1.75 0.48211429
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Conclusion 
 
Idea1 was chosen as the algorithm to be implemented to perform integration.  Idea1 allows 
integration methods 1 and 2 to be implemented, allows any function to be integrated, allows ∆X 
to be changed, and allows a lower limit to be specified. 
 
The integration algorithm was run.  Idea1 was made into an object called Integral object.  For 
linear functions, using large values of ∆X and less iterations produce smaller errors.  For other 
functions, using more iterations increases their accuracy.  A ∆X value of 0.01 produces a 
reasonable result with a small percent error.  The functions used have shown that Method 2 is 
more accurate than Method 1.  However, for functions that involve square root, the Integral 
object does not produce accurate results.  It is hypothesized that there is a bug within the VIVA 
algorithm or within VIVA itself that needs to be found and corrected. 
 
It is now possible to perform integration on any function using FPGAs.  The integration 
algorithm needs some fine-tuning.  However, the groundwork has been done to make the 
development of more complex algorithms possible. The algorithm that has been developed can 
be implemented to solve differential equations.  It is hoped that the new capability given by the 
integration algorithm can significantly speed up engineering problem solving. 
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